Nature Reviews Microbiology 3, 917-924 (December 2005) | doi:10.1038/nrmicro1285
Symbiosis versus competition in plant virus evolution
Darwin's theory of evolution by natural selection has been supported by molecular evidence and by experimental evolution of viruses. However, it might not account for the evolution of all life, and an alternative model of evolution through symbiotic relationships also has gained support. In this review, the evolution of plant viruses has been reinterpreted in light of these two seemingly opposing theories by using evidence from the earliest days of plant virology to the present. Both models of evolution probably apply in different circumstances, but evolution by symbiotic association (symbiogenesis) is the most likely model for many evolutionary events that have resulted in rapid changes or the formation of new species. In viruses, symbiogenesis results in genomic reassortment or recombination events among disparate species. These are most noticeable by phylogenetic comparisons of extant viruses from different taxonomic groups.
No comments:
Post a Comment